

The Forecast Quality Project

- In 2021 the Bureau released the Forecast Quality Roadmap
 - METplus was a cornerstone of this benefits described in this document
- Following this, The Forecast Quality PST project (P20) adopted the operationlisation of METplus
 - Initially the focus for METplus will be NWP data - replacing existing verification tools, and uplifting capacity

Roadmap and Plan revised 19 May 2021

The Bureau of Meteorology 2

Verification workflow

Instagram for Verification

 Developers create the application, scientists create the content

Verification workflow

Instagram for Verification

- Developers create the application, scientists create the content
- Interface and "posting" process will be GitLab
- CI pipelines used to validate and deploy configs

System design

- Not running in a HPC.
- Uses Airflow as a master scheduler
- Significant effort has been spent on Python tools to preprocess data.
- Version control and application deployment controlled via GitLab and internal conda mirrors
- All code is built and deployed as conda packages – including MET and METplus

METplus Stage 1

- Scope
- Routine gridded verification (over 80 verification cases)
 - Replace existing NWP verification for most variables
 - New spatial verification capability for rainfall
 - GFE gridded (IMPROVER and Official forecasts) verification

Products:

 Verification maps, time series, diagnostics, statistics updated every 12 hrs (global) or 6 hrs (regional)

Variable	Forecasts	Observations
Daily rainfall	ACCESS-G/GE, ACCESS-C/CE, IMPROVER, overseas models	AWAP/AGCD, GPM-IMERG, AWS
Probability of precipitation	ACCESS-GE, ACCESS-CE, IMPROVER	AWAP/AGCD, AWS
Surface variables	ACCESS-G/GE, ACCESS-C/CE, IMPROVER	AWS
Upper levels	ACCESS-G/GE, overseas models	Own analysis, radiosondes
Sub-daily rainfall	ACCESS-C/CE, IMPROVER	AWS, Rainfields
Sub-daily PoP	ACCESS-C/CE, IMPROVER	AWS

(stretch goal)

Proposed list of routine METplus verification plots

Highest priority plots

Time series of forecasts & observations

Maps of forecast and observations

Scatter plot

Probability integral transform/Q-Q plot

MODE object verification chart

Score vs threshold

Time series of score

Score vs lead time

Gridded map of scores

Gridded map of score difference

Ensemble spread-skill

Reliability diagram

Additions from 24 July workshop

Score vs diurnal cycle

Score vs height (radiosonde)

Rain rate distribution

Use Case: ACCESS-C4/CE4 Rainfall

Forecast: 24-h accumulated precipitation (00Z)

Observations: Auto Weather Station (AWS) and Australia Water Availability Project (AWAP)

Domain: Sydney

Verification period: Feb-March 2023

Use Case: ACCESS-C4/CE4 Rainfall

Fractions Skill Score (FSS)

Expected behaviour – Increase in FSS values by increase in window size, and decrease in FSS by increase in event threshold

Note: We are currently addressing some issues in calculating FSS for ensemble forecasts.

Read more about FSS for ensemble forecast in Necker et al., 2024

24hr Precipitation Accumulation, Fractions Skill Score (Forecast - Analysis), syd, T+24, Meaned between 20230131 00:00 and 20230401 00:00, Analysis, ACCESS-C4-SydneyACCESS C4 00z vs AWAP Daily Rainfall Sydney

Use Case: ACCESS-C4/CE4 Rainfall

24hr Accumulated Precipitation - ACCESS-C/CE Sydney Domain Continuous Ranked Probablity Score (CRPS)

Model	Neighbourhood size	Number of pseudoensemble
ACCESS-C	5	5×5×1 = 25
ACCESS-CE	1	1×1×23 = 23
ACCESS-C	15	15×15×1 = 225
ACCESS-CE	3	$3 \times 3 \times 23 = 207$

Read more about HiRA in <u>Mittermaier an</u> Csima (2017)

Tools/Data tested so far

Tools

Verification:

- GridStat,
- PointStat,
- EnsembleStat
- SeriesAnalysis
- MODE
- GenEnsProd

Analysis/Processing:

- ASCII2NC
- StatAnalysis
- PCPCombine

Visualisation:

- VerPy
- metplus_bom

Data

Parameters:

- Temperature
- Mean sea level pressure
- Wind
- Rainfall

Model/Forecasts:

- ACCESS-G/GE/C/CE (APS3 and 4)
- GFE IMPROVER

Observations:

- AWS
- Radiosonde
- AWAP/AGCD
- GPM
- Model analysis

What's next?

Path to production: Making routine verification on EDC to support operations

Adding more routine verification jobs (including Official Forecasts)

Training for Bureau staff how to use METplus and metplus_bom and our Gitlab repo to test verification jobs

Collaborate with scientists to add more verification cases

Exploring visualisation options including VerPy and Jive

ACCESS-A/AE verification using METplus

Thank you

Reza Khanarmuei

Mohammadreza.Khanarmuei@bom.gov.au